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Chapter 1

The Laplacian

“Je parviens à une expression en
séries, générale et simple, des
attractions des sphéroïdes
quelconques très peu différents de la
sphère. Il est assez remarquable que
cette expression soit donnée sans
aucune intégration et par la seule
différentiation de fonctions.”1

Pierre-Simon de Laplace

We present classical properties of harmonic and superharmonic functions, in con-
nection with monotonicity formulas and maximum principles.

1.1 Laplace and Poisson equations

The Laplacian ! appeared in the 18th and 19th centuries in the studies of gravita-
tional and electrostatic potentials. Assume that uW# ! R denotes a smooth function
describing one of these physical quantities in a region where there is no mass or elec-
tric charges. Then, the total flux of the field !ru through the boundary of any open
ball B.xI r/ b # strictly contained in # must vanish:

ˆ

@B.xIr/

.!ru/ # n d$ D 0:

The integral above is taken with respect to the surface measure $ , which coincides
with the .N ! 1/-dimensional Hausdorff measureHn!1. By the divergence theorem
(see Theorem 9.2.4 in [345]), we deduce that, on every ball B.xI r/ b #, we have

!
ˆ

B.xIr/

div .ru/ D 0;

and so u satisfies the Laplace equation:

!u D 0 in #,

and is called a harmonic function.
1“I obtain a general and simple expression, in terms of a series, for the attraction of arbitrary spheroids

that are not very different from the sphere. It is quite remarkable that this expression is given without
any integration and only through the differentiation of functions.”
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Example 1.1. For every a 2 RN in dimensionN > 3, the function uWRN n¹aº ! R

defined for x 2 RN n ¹aº by

u.x/ D 1

jx ! ajN!2

is harmonic, which can be checked by differentiating twice this function. An example
of radially symmetric harmonic function in dimension N D 2 is

u.x/ D log
1

jx ! aj :

Exercise 1.1 (radial harmonic functions). Prove that all radial harmonic functions
uWRN n ¹0º ! R in dimension N > 3 are of the form

u.x/ D ˛

jxjN!2
C ˇ;

for some ˛;ˇ 2 R. What is the counterpart in dimension N D 2?

We may also consider the case where u denotes the electrostatic potential gen-
erated by some distribution of electric charges of density "W# ! R. In this case,
by Gauss’s law the total flux through the boundary of the ball B.xI r/ b # equals
the total charge inside this ball:

ˆ

@B.xIr/

.!ru/ # n d$ D
ˆ

B.xIr/

":

By the divergence theorem, we deduce that, for every ball B.xI r/ b #, we have

!
ˆ

B.xIr/

div .ru/ D
ˆ

B.xIr/

";

and so the function u satisfies the Poisson equation:

!!u D " in #.

A large class of solutions of the Poisson equation is given by the Newtonian potential
generated by ":

Proposition 1.2. Let N > 3. If "WRN ! R belongs to the space C1
c .RN /

of smooth functions with compact support in RN , then the Newtonian potential
uWRN ! R defined for x 2 RN by

u.x/ D 1

.N ! 2/$N

ˆ

RN

".y/

jx ! yjN!2
dy;

where $N denotes the measure of the .N ! 1/-dimensional unit sphere @B.0I 1/ in
RN , is a bounded smooth function satisfying the Poisson equation !!u D " inRN .
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The function F WRN n ¹0º ! R defined by

F.z/ D 1

.N ! 2/$N

1

jzjN!2

is called the fundamental solution of the Laplacian in dimension N > 3. Using this
notation, we write the Newtonian potential as a convolution between F and ":

u.x/ D
ˆ

RN

F.x ! y/".y/ dy D .F % "/.x/:

Proof of Proposition 1.2. Since the density " has compact support and F is locally
integrable, u is well defined. By the change of variables z D x ! y, we have

u.x/ D
ˆ

RN

F.z/".x ! z/ dz;

whence the function u is smooth. Differentiating under the integral sign, and then
undoing the previous change of variables, we get

!u.x/ D
ˆ

RN

F.x ! y/!".y/ dy: (1.1)

We now identify the integrand as the divergence of a smooth vector field inRN n¹xº.
For this purpose, denote Fx.y/ D F.x ! y/ D F.y ! x/. We have

div .Fx r"/ D rFx # r"C Fx !";

div ."rFx/ D r" # rFx C "!Fx:

Since the function Fx is harmonic inRN n¹xº (Example 1.1), subtracting the second
identity from the first one we deduce that

div .Fx r" ! "rFx/ D Fx !":

The function Fx r" ! "rFx has compact support in RN and is smooth on
RN n ¹xº. We are thus allowed to apply the divergence theorem to open sets of
the form RN n BŒxI r&. For every r > 0, we then get

ˆ

RN nBŒxIr"

Fx.y/!".y/ dy D
ˆ

@B.xIr/

.Fx r" ! "rFx/ # .!n/ d$; (1.2)

where n.z/ D .z ! x/=r is the outward normal vector with respect to B.xI r/.
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For every z 2 @B.xI r/, we now compute

Fx.z/ D 1

.N ! 2/$N rN!2

and

rFx.z/ # n.z/ D ! 1

$N rN!1
:

Rewriting the right-hand side of identity (1.2) in terms of average integrals over
spheres, we get

ˆ

RN nBŒxIr"

Fx.y/!".y/ dy D ! r

N ! 2

 

@B.xIr/

r" # n d$ !
 

@B.xIr/

" d$:

Since the right-hand side converges to !".x/ as r ! 0, by identity (1.1) and the
dominated convergence theorem we deduce that

!u.x/ D lim
r!0

ˆ

RN nBŒxIr"

Fx.y/!".y/ dy D !".x/: !

According to the proposition above, for every function " 2 C1
c .RN / we have

!!.F % "/ D " in R
N :

By an affine change of variable and by differentiation under the integral sign,
we obtain the following representation formula involving the Laplacian: for every
x 2 RN ,

".x/ D !
ˆ

RN

F.x ! y/!".y/ dy:

Exercise 1.2 (representation formulas in dimensions 1 and 2). Prove that

.a/ given " 2 C1
c .R/, for every x 2 R we have

".x/ D 1

2

ˆ

R

jx ! yj"00.y/ dyI

.b/ given " 2 C1
c .R2/, for every x 2 R2 we have

".x/ D 1

2'

ˆ

R2

log jx ! yj!".y/ dy:

The Newtonian potential satisfies the Poisson equation when the density " is
merely aHölder-continuous function of exponent˛ for some 0 < ˛ < 1, but the proof
of the counterpart of Proposition 1.2 has to be substantially modified, see Lemma 4.2
in [146]. In this case, the Newtonian potential is a C 2;˛ function.



Chapter 2

Poisson equation

“Les fonctions de domaine ont un
sens physique très clair : ce sont les
nombres qui mesurent des
grandeurs. À cet égard, ces nombres
s’introduisent en physique plus
primitivement même que les
fonctions de point, lesquelles ne
servent le plus souvent qu’à
étalonner des qualités.”1

Henri Lebesgue

We now consider solutions of the Poisson equation

!!u D "

in the sense of distributions. As a consequence of the Riesz representation theorem,
every weakly superhamonic function satisfies the Poisson equation for some nonneg-
ative Borel measure ".

2.1 Finite measures

We briefly recall in this section the definition and some properties of finite Borel
measures.

Definition 2.1. Given a measure spaceX equipped with a $ -algebra†, a finite mea-
sure + is a set function +W† ! R such that, for every sequence .An/n2N of disjoint
subsets belonging to †, we have

+
% 1[

kD0

Ak

&
D

1X

kD0

+.Ak/:

In particular, we have +.;/ D 0. Measures are natural objects in gravitational
and electrostatic problems, since +.A/ can be physically interpreted as the mass or
electric charge contained in the set A.

1“Set functions have a clear physical meaning: these are the numbers that measure quantities. In this
respect, these numbers are introduced in physics more primitively than point functions, which are most
often used to calibrate properties.”
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Exercise 2.1 (monotone set lemma). Let + be a finite measure on a measure spaceX .
Prove that

.a/ if .An/n2N is a nondecreasing sequence of sets in †, then

+
% 1[

kD0

Ak

&
D lim

n!1
+.An/I

.b/ if .An/n2N is a non-increasing sequence of sets in †, then

+
% 1\

kD0

Ak

&
D lim

n!1
+.An/:

In analogy with Definition 2.1, one also considers nonnegative measures +, de-
fined in the $ -algebra†, taking values in the interval Œ0;C1&. An important example
is the Lebesgue measure on RN .

Exercise 2.2. Let + be a nonnegative measure on a measure space X . Prove that

.a/ + is monotone: if A;B 2 † and A " B , then +.A/ 6 +.B/;

.b/ + is subadditive: if .An/n2N is a sequence of elements in †, not necessarily
disjoint, then

+
' 1[

kD0

Ak

(
6

1X

kD0

+.Ak/:

IfX is a locally compact topological space, an important example of $ -algebra is
the class of Borel subsets of X : this is the smallest $ -algebra containing all compact
– or equivalently all open – subsets of X . The typical example of locally compact
spaceX we consider is given by an open subset# " RN endowedwith the Euclidean
topology. We then denote by M.#/ the vector space of finite Borel measures on #,
and we equip this space with the total variation norm defined by

k"kM.!/ D sup ¹".A/! ".B/WA;B 2 B.#/º:

Exercise 2.3. Prove that k#kM.!/ is a norm in M.#/.

One of the reasons for choosing such a norm is to recover the usualL1 norm when
dealing with densities of the Lebesgue measure:

Example 2.2. For every summable function f W# ! R, denote by -f the measure
given in terms of the Lebesgue measure with density f : for every Borel set A " #,

-f .A/ D
ˆ

A

f:
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By definition of the integral, this measure -f satisfies
ˆ

!

 d-f D
ˆ

!

 f

for every measurable step function  W# ! R, and so for every bounded measurable
function  . The supremum in the definition of the total variation norm is achieved
using the sets A D ¹f > 0º and B D ¹f < 0º, and we have

k-f kM.!/ D
ˆ

¹f >0º
f !

ˆ

¹f <0º
f D kf kL1.!/:

Throughout the book, we identify the measure -f with its associated density f .

A convenient characterization of the total variation norm is provided by the pos-
itive and negative parts of the measure:

k"kM.!/ D "C.#/C "!.#/ D j"j.#/: (2.1)

The definitions of the measures "C and "! are based on the Jordan decomposition
theorem, see Theorem 8.2 in [21] or Theorem 3.3 [134]:

Proposition 2.3. Let .X I +/ be a measure space. Then, there exists a measurable set
E " X such that

(i) for every measurable set A " E, we have +.A/ > 0,

(ii) for every measurable set A " X n E, we have +.A/ 6 0.

Denoting by E " # any Borel set given by the Jordan decomposition theorem,
the positive part of " is the nonnegative measure "C defined for every Borel set
A " # by contraction of " on E as

"C.A/ D "bE .A/ D ".A \E/;

and the negative part of " is the nonnegative measure "! defined for every Borel set
A " # by contraction of !" on # nE as

"!.A/ D !"b!nE .A/ D !".A nE/:

The notations max ¹"; 0º to denote the measure "C and min ¹"; 0º for !"! are also
used. By the additivity of ", we have

" D "C ! "! D max ¹"; 0º C min ¹"; 0º;

and the total variation measure j"j is defined as

j"j D "C C "!:
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Exercise 2.4. Prove identity (2.1).

The vector space of finite Borel measuresM.#/ equipped with the total variation
norm is a Banach space, but is not separable since, for every distinct points a; b 2 #,
the Dirac mass gives

kıa ! ıbkM.!/ D ıa.#/C ıb.#/ D 2:

Here, the Dirac mass ıa is the measure defined for every Borel set A " RN by

ıa.A/ D
´
1 if a 2 A,
0 if a 62 A.

Onemay try to approximate a given finite measure" in# using some sequence of
measures ."n/n2N having better properties like density or capacitary upper bounds
(cf. Chapter 14). In general, this is very difficult to achieve – or simply impossible –
using the strong convergence with respect to the total variation norm:

lim
n!1

k"n ! "kM.!/ D 0:

For instance, the Dirac mass ıa with a 2 # cannot be strongly approximated by
summable functions since, for every f 2 L1.#/, we have

kf ! ıakM.!/ D kf kL1.!/ C 1:

Behind this obstruction lies a more general fact: singular measures cannot be
strongly approximated by absolutely continuous measures.

Exercise 2.5. Prove that if .fn/n2N is a sequence in L1.#/ converging strongly to
some measure " in M.#/, then " D f for some summable function f .

In many situations it suffices to have convergence in the weak sense, sometimes
also called vague convergence:

Definition 2.4. Let " 2 M.#/. A sequence ."n/n2N inM.#/ converges weakly to
" in the sense of measures if, for every % 2 C 0

c .#/, we have

lim
n!1

ˆ

!

% d"n D
ˆ

!

% d";

where C 0
c .#/ denotes the set of continuous functions with compact support in #.
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Another characterization of the total variation norm in connection with this notion
of convergence is the following:

k"kM.!/ D sup

²
ˆ

!

% d"W % 2 C 0
c .#/ and j%j 6 1 in #

³
: (2.2)

This identity is based on the following remarkable regularity property of mea-
sures, discovered by Lebesgue in RN , see Section 7.2 in [134]:

Proposition 2.5. LetX be a locally compact space, and let + be a finite Borel measure
on X . Then, for every Borel set A " # and every , > 0, we have

(i) inner regularity: there exists a compact set K " A such that j+.A nK/j 6 ,,

(ii) outer regularity: there exists an open set U & A such that j+.U n A/j 6 ,.

According to this proposition, a finite measure is determined by its values on all
compact or all open subsets.

Exercise 2.6. Let " 2 M.#/.

.a/ Prove that

k"kM.!/ D sup ¹".K/! ".L/WK;L " # are compact and disjointº:

.b/ Deduce identity (2.2).

The total variation norm is lower semicontinuous with respect to the weak con-
vergence:

Proposition 2.6. If ."n/n2N is a sequence in M.#/ converging weakly to " in the
sense of measures on #, then

k"kM.!/ 6 lim inf
n!1

k"nkM.!/:

Proof. For every % 2 C 0
c .#/ such that j%j 6 1 in #, we have

ˇ̌
ˇ̌
ˆ

!

% d"n

ˇ̌
ˇ̌ 6 k"nkM.!/:

Taking the limit as n ! 1, the weak convergence of the sequence ."n/n2N yields
that

ˆ

!

% d" 6 lim inf
n!1

k"nkM.!/:

The estimate follows from the characterization (2.2) by taking the supremum of the
left-hand side with respect to %. !
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We now prove that every finite Borel measure can be approximated by smooth
functions in the weak sense:

Proposition 2.7. For every " 2 M.#/, there exists a sequence of summable func-
tions .fn/n2N in C1.x#/ converging weakly to " in the sense of measures on#, and
such that

lim
n!1

kfnkL1.!/ D k"kM.!/:

The argument is based on a convolution of " using a sequence of mollifiers
.)n/n2N: for every n 2 N, )n 2 C1

c .RN / is a nonnegative function such that
ˆ

RN

)n D 1

and, for every . > 0,

lim
n!1

ˆ

RN nB.0I&/

)n D 0:

A convenient choice of mollifiers consists in taking

)n.x/ D 1

,N
n

)
% x
,n

&

for some fixed function ) 2 C1
c .RN / and some sequence of positive numbers

.,n/n2N converging to zero.

Proof of Proposition 2.7. Given a sequence of mollifiers .)n/n2N, for every n 2 N

let )n % "WRN ! R be the convolution defined for x 2 RN as

)n % ".x/ D
ˆ

!

)n.x ! y/ d".y/:

In particular, )n % " 2 C1.x#/, and we also have )n % " 2 L1.RN /. If in addition
)n is an even function, then, for every % 2 C 0

c .#/, it follows from Fubini’s theorem
that

ˆ

!

% )n % " D
ˆ

!

#
ˆ

!

)n.x ! y/%.x/ dx
$
d".y/ D

ˆ

!

)n % % d":

Since % 2 C 0
c .#/, the sequence .)n % %/n2N converges uniformly to % in x#, from

which we deduce the weak convergence of .)n %"/n2N to" in the sense of measures.
To conclude with fn D )n % ", by the lower semicontinuity of the norm

under weak convergence (Proposition 2.6) it suffices to check that, for every n 2 N,
we have

k)n % "kL1.!/ 6 k"kM.!/:
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This is a consequence of Fubini’s theorem. Indeed, for every x 2 #,

j)n % ".x/j 6

ˆ

!

)n.x ! y/ dj"j.y/:

Thus, by Fubini’s theorem, we get

k)n % "kL1.!/ 6

ˆ

!

#
ˆ

!

)n.x ! y/ dx
$
dj"j.y/ 6

ˆ

!

dj"j.y/ D k"kM.!/;

and the conclusion follows. !

We close this section with the weak compactness property of bounded sequences
of measures due to Radon, see p. 1337 in [290]:

Proposition 2.8. If ."n/n2N is a bounded sequence inM.#/, then there exists a sub-
sequence ."nk

/k2N converging weakly to some " 2 M.#/ in the sense of measures
on #.

Themain ingredient in the proof of Proposition 2.8 is the Riesz representation the-
orem that was originally stated by F. Riesz [294] as a way of identifying a continuous
linear functional in the space of continuous functions, see Section 7.1 in [134]:

Proposition 2.9. Let X be a locally compact metric space. If T WC 0
c .X/ ! R is a

linear functional such that, for every % 2 C 0
c .X/,

jT .%/j 6 C sup
X

j%j;

then there exists a unique finite Borel measure + onX such that, for every% 2 C 0
c .X/,

T .%/ D
ˆ

X

% d+:

Proof of Proposition 2.8. LetD be a countable subset of C 0
c .#/. Using a diagonal-

ization argument, there exists a subsequence ."nk
/k2N such that, for every % 2 D,

the limit

lim
k!1

ˆ

!

% d"nk

exists. Choosing D to be a dense subset of C 0
c .#/ with respect to the sup norm,

it follows that such a limit exists for every % 2 C 0
c .#/, and we define

T .%/ D lim
k!1

ˆ

!

% d"nk
:

Since ˇ̌
ˇ̌
ˆ

!

% d"nk

ˇ̌
ˇ̌ 6 k"nk

kM.!/ sup
!

j%j;
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for every k 2 N, the functional T WC 0
c .#/ ! R satisfies

jT .%/j 6 .lim inf
k!1

k"nk
kM.!// sup

!

j%j:

Hence, by the Riesz representation theorem, there exists a finite measure" on# such
that, for every % 2 C 0

c .#/,

lim
k!1

ˆ

!

% d"nk
D T .%/ D

ˆ

!

% d":

This gives the conclusion. !

2.2 Distributional solutions

We are interested in solutions of the Poisson equation for some measure data:

Definition 2.10. Let " 2 M.#/. We say that u is a solution of the Poisson equation

!!u D "

in the sense of distributions in # if u 2 L1
loc.#/ and if u satisfies, for every

' 2 C1
c .#/, the integral identity

!
ˆ

!

u!' D
ˆ

!

' d":

If uW# ! R is a smooth function, then

div.ur' ! 'ru/ D u!' ! '!u:

Hence, by the divergence theorem we have that

!
ˆ

!

u!' D
ˆ

!

'.!!u/;

for every ' 2 C1
c .#/.

We now consider two examples inducing legitimate measures, that rely on the
representation formula (Proposition 1.2): for every ' 2 C1

c .RN /,

' D !!.F % '/ D !F % .!'/; (2.3)

where F is the fundamental solution of the Laplacian.
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Example 2.11. For every a 2 RN , the function

FaWRN !! R

defined for y 2 RN n ¹aº by
Fa.y/ D F.y ! a/

satisfies the Poisson equation
!!Fa D ıa

in the sense of distributions inRN . Indeed, by the definition of the convolution prod-
uct and the representation formula (2.3), for every ' 2 C1

c .RN / we have
ˆ

RN

Fa !' D .F %!'/.a/ D !'.a/ D !
ˆ

RN

' dıa:

Example 2.12. Let N > 3. The Newtonian potential generated by a nonnegative
measure " 2 M.RN / is the function

N"WRN !! Œ0;C1&

defined by

N".x/ D
ˆ

RN

F.x ! y/ d".y/ D 1

.N ! 2/$N

ˆ

RN

d".y/

jx ! yjN!2
:

We note that N" belongs to L1
loc.R

N / and satisfies

!!N" D "

in the sense of distributions inRN . Indeed, by Fubini’s theorem and by the represen-
tation formula (2.3), for every ' 2 C1

c .RN / we have
ˆ

RN

N"!' D
ˆ

RN

.F %!'/ d" D !
ˆ

RN

' d":

The original approach in the 1920s and 1930s to investigate the Poisson equation
with measure data using the Newtonian potential was later superseded by the formu-
lation in the sense of distributions in the 1940s thanks to the flexibility and greater
generality of the latter. We now verify that every solution of the Poisson equation
with nonnegative measure datum equals the Newtonian potential modulo a harmonic
function:

Proposition 2.13. Let N > 3, and let " 2 M.#/ be a nonnegative measure.
If u 2 L1

loc.#/ is a solution of the Poisson equation with density ", then there exists
a harmonic function hW# ! R such that

u D N"C h

almost everywhere in #.
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Variational approach

“. . . le condizioni particolarissime in
cui l’Hilbert tratta il problema di
Dirichlet appaiono elemento
integrante delle sue deduzioni e
pare lascino ben poca speranza che
con ragionamenti analoghi possa
trattarsi, senza profonde
modificazioni, il problema
generale.”1

Beppo Levi

We prove the existence of variational solutions of the Dirichlet problem
´

!!uC g.u/ D " in #,

u D 0 on @#,

when the nonlinearity g satisfies the sign condition and the density " belongs to the
dual Sobolev space .W 1;2

0 .#//0.

4.1 Sobolev spaces

Before starting with the variational problem, we explain the setting where the energy
functional is minimized: the Sobolev space W 1;2

0 .#/. More generally, we consider
Sobolev spaces associated to any exponent 1 6 q < C1 as follows:

Definition 4.1. Let # be a bounded open set, and let u 2 Lq.#/. We say that u
belongs to the Sobolev space W 1;q

0 .#/ if there exists G 2 Lq.#IRN / such that,
for every ˆ 2 C1.x#IRN /, we have

ˆ

!

u divˆ D
ˆ

!

G #ˆ:

1“The very special conditions in which Hilbert studies the Dirichlet problem seem to be an essential
part of the argument, and leave little hope that the general problem could be handled without substantial
changes.”
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Both integrands are summable over# since the domain is assumed to be bounded.
Two functions G1; G2 2 Lq.#IRN / satisfying this identity for the same function u
are equal almost everywhere in #, see Corollary 4.24 in [53] or Theorem 4.3.10
in [345]: this important property is sometimes called the fundamental theorem of the
calculus of variations. We systematically use the notation

ru D !G
for the weak gradient. We then recover the formula

ˆ

!

u divˆ D !
ˆ

!

ru #ˆ

which follows from the divergence theorem for functions u 2 C1
0 .x#/ vanishing on

the boundary of a smooth bounded open set #.
The Sobolev spaceW 1;q

0 .#/ is well suited to study minimization problems and to
give ameaning to weak formulations of Dirichlet problems involving a zero boundary
condition. The reason is that it enjoys two fundamental properties: it is complete with
respect to its natural norm satisfying

kukq

W 1;q.!/
D kukq

Lq.!/
C krukq

Lq.!/
; (4.1)

and is sensitive to boundary conditions.

Exercise 4.1 (zero boundary datum). Let # be a smooth bounded open set, and let
u 2 C 1.x#/. Prove that u 2 W 1;q

0 .#/ if and only if u D 0 on @#.

The completeness of the Sobolev spaces relies on a stability property satisfied by
sequences of Sobolev functions.

Proposition 4.2. For every bounded open set#,W 1;q
0 .#/ is a complete metric space.

Proof. Given a Cauchy sequence .un/n2N in W 1;q
0 .#/, the sequence .un/n2N is

Cauchy in Lq.#/ and the sequence .run/n2N is Cauchy in Lq.#IRN /, and so they
converge to u 2 Lq.#/ and to F 2 Lq.#IRN /, respectively. To conclude the proof,
we show that

u 2 W 1;q
0 .#/ and ru D F (4.2)

using the stability property: for every ˆ 2 C1.x#IRN / and every n 2 N, we have
ˆ

!

un divˆ D !
ˆ

!

run #ˆ;

whence, as n ! 1, we get
ˆ

!

u divˆ D !
ˆ

!

F #ˆ:

Thus, assertion (4.2) holds, and the conclusion follows. !
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The stability property provides one with examples of Sobolev functions which
need not be differentiable:

Exercise 4.2. Prove that the function uWB.0I 1/ ! R defined for x 2 B.0I 1/ by

u.x/ D 1 ! jxj

belongs to W 1;q
0 .B.0I 1// for every exponent 1 6 q < C1, and ru.x/ D !x=jxj

almost everywhere in B.0I 1/.

Exercise 4.3. Let ˛ > 0. Prove that the function uWB.0I 1/!R defined for x¤ 0 by

u.x/ D 1

jxj˛ ! 1

belongs to W 1;q
0 .B.0I 1// for every exponent q such that q.˛ C 1/ < N .

The convolution product gives a convenient way to study properties of Sobolev
functions in W 1;q

0 .#/ via approximation by smooth functions with compact support
in RN :

Proposition 4.3. Let # be a bounded open set. If u 2 W
1;q

0 .#/, then, for every
) 2 C1

c .RN /, we have ) % u 2 C1
c .RN / and

r.) % u/ D ) % ru in RN .

Proof. For every x 2 RN , we have

) % u.x/ D
ˆ

!

).x ! y/u.y/ dy:

Thus, ) % u 2 C1
c .RN /, and by differentiation under the integral sign we get

r.) % u/.x/ D
ˆ

!

rx).x ! y/u.y/ dy D !
ˆ

!

ry).x ! y/u.y/ dy:

For every e 2 RN , we have e # r) D div .)e/. Thus, by the linearity of the integral
and by the definition of the weak gradient of u we get

e # r.) % u/.x/ D !
ˆ

!

divy .)e/.x ! y/ u.y/ dy

D
ˆ

!

).x ! y/ e # ru.y/ dy

D e # .) % ru/.x/:

Since this identity holds for every e 2 RN , we have the conclusion. !
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Exercise 4.4 (constant Sobolev functions). Prove that if u 2 W
1;q

0 .#/ is such that
ru D 0, then u D 0 almost everywhere in #.

Exercise 4.5 (Leibniz rule). Prove that, for every u; v 2 W
1;q

0 .#/ \ L1.#/,
we have uv 2 W 1;q

0 .#/ and

r.uv/ D ru v C urv:

Exercise 4.6 (chain rule). Let H 2 C 1.R/. Prove that if H.0/ D 0 and H 0 is
bounded, then, for every u 2 W 1;q

0 .#/, we haveH.u/ 2 W 1;q
0 .#/ and

rH.u/ D H 0.u/ru:

In smooth domains #, the approximation of Sobolev functions can be performed
using functions compactly supported in #:

Proposition 4.4. For every smooth bounded open set #, the set C1
c .#/ is dense

in W 1;q
0 .#/.

We recover in this case the usual approach to define the space W 1;q
0 .#/ as the

completion ofC1
c .#/with respect to the Sobolev norm (4.1). We take this statement

for granted. Proposition 4.4 can be proved combining the characterization of the
kernel of the trace operator (see Theorem 6.6.4 in [187]) with Exercise 15.1 below.
Note however that if# is a ball, then Proposition 4.4 has a straighforward proof based
on scaling:

Exercise 4.7 (approximation with compact support). For every u 2 W 1;q
0 .B.0I 1//,

prove that there exists a sequence .un/n2N in the set C1
c .B.0I 1// which converges

to u in W 1;q
0 .B.0I 1//.

The fact that nonzero constant functions cannot belong to W 1;q
0 .#/ is quantified

by the Poincaré inequality, see Corollary 9.19 in [53] or Theorem 6.4.7 in [345]:

Proposition 4.5. Let # be a bounded open set. Then, for every u 2 W
1;q

0 .#/,
we have

kukLq.!/ 6 CkrukLq.!/;

for some constant C > 0 depending on the diameter diam#.

Proof. LetQ.aI r/ be a cube such that# b Q.aI r/. Using the fundamental theorem
of calculus and the Hölder inequality, one shows that, for every ' 2 C1

c .Q.aI r//,

k'kLq.Q.aIr// 6 rkr'kLq.Q.aIr//:
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Given a sequence ofmollifiers .)n/n2N inC1
c .RN / such that#Csupp )n b Q.aI r/,

we have )n % u 2 C1
c .Q.aI r//. By the inequality above for smooth functions and

by Proposition 4.3, we then have

k)n % ukLq.Q.aIr// 6 rk)n % rukLq.Q.aIr//:

Letting n ! 1, the conclusion follows. !

Taking advantage of the Hilbert space structure of W 1;2
0 .#/, we now establish

the existence of solutions of the linear Dirichlet problem for the Poisson equation for
every density " in the dual space .W 1;2

0 .#//0:

´
!!u D " in #,

u D 0 on @#.

The main ingredient is the Fréchet–Riesz representation theorem in Hilbert spaces,
see Theorem 5.5 in [53] or Theorem 5.3.1 in [345].

Proposition 4.6. Let # be a bounded open set. Then, for every " 2 .W
1;2

0 .#//0,
there exists a unique function u 2 W

1;2
0 .#/ such that, for every z 2 W

1;2
0 .#/,

we have
ˆ

!

ru # rz D "Œz&:

Proof. By the Poincaré inequality (Proposition 4.5), the bilinear form

W
1;2

0 .#/ 'W 1;2
0 .#/ 3 .u; z/ 7!!

ˆ

!

ru # rz

is an inner product in W 1;2
0 .#/ and induces a norm that is equivalent to the W 1;2

norm. By the Fréchet–Riesz representation theorem in Hilbert spaces, there exists a
unique function u 2 W 1;2

0 .#/ such that, for every z 2 W 1;2
0 .#/, we have

"Œz& D
ˆ

!

ru # rz: !

A function u 2 W
1;2

0 .#/ satisfying the conclusion of Proposition 4.6 is called
a (variational) solution of the Dirichlet problem in W

1;2
0 .#/ with density ".

If u and " are smooth functions in#, then u satisfies pointwise the Poisson equation
with density ". Assuming in addition that u has a smooth extension to the boundary
of a smooth domain #, then from the integral formulation above we find that such
an extension vanishes identically on @# (cf. Exercise 4.1), whence u satisfies the
Dirichlet problem in the classical sense.
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This formalism includes the case of L2 data:

Example 4.7. Every function " 2 L2.#/ can be interpreted as an element of the
dual space .W 1;2

0 .#//0 by acting on every z 2 W 1;2
0 .#/ as

"Œz& D
ˆ

!

"z:

Indeed, by the Hölder inequality we have "z 2 L1.#/ and

j"Œz&j D
ˇ̌
ˇ̌
ˆ

!

"z

ˇ̌
ˇ̌ 6 k"kL2.!/kzkL2.!/ 6 k"kL2.!/kzkW 1;2.!/:

Thus, the solution of the Dirichlet problem in W 1;2
0 .#/ with density " exists and

satisfies, for every / 2 C1
0 .x#/,

!
ˆ

!

u!/ D
ˆ

!

ru # r/ D
ˆ

!

"/:

Exercise 4.8 (weak maximum principle). Prove that if " 2 L2.#/ is a nonnegative
function, then the solution of the Dirichlet problem inW 1;2

0 .#/with density " is also
nonnegative almost everywhere.

The Fréchet–Riesz representation theorem is well suited to solve linear problems.
In the study of nonlinear problems, the Rellich–Kondrashov compactness theorem
is an important tool to deal with bounded sequences of Sobolev functions, see Theo-
rem 9.16 in [53], Theorem 5.7.1 in [125], or Theorem 6.4.6 in [345]:

Proposition 4.8. Let # be a bounded open set. Then, for every bounded sequence
.un/n2N in W 1;q

0 .#/, there exists a subsequence .unk
/k2N converging strongly

in Lq.#/.

The proof relies onM. Riesz’s compactness criterion of equi-integrable sequences
of functions, see Theorem 4.26 in [53] or Theorem 4.4.2 in [345], which is the coun-
terpart in Lebesgue spaces of the classical Ascoli–Arzelà compactness theorem for
continuous functions.

The subsequence given by Proposition 4.8 can be assumed to converge almost
everywhere. To bemore precise, wemay extract a further subsequence from .unk

/k2N
which converges almost everywhere in#. This is a general property of sequences of
functions converging strongly in Lebesgue spaces, and relies on the following partial
converse of the dominated convergence theorem, see Theorem 4.9 in [53] or Propo-
sition 4.2.10 in [345]:



Chapter 5

Linear regularity theory

“Si la force F est proportionnelle à
1

-2 , il suffira de trouver la valeur de
1
-

et de la différencier par les
méthodes ordinaires.”1

Joseph-Louis Lagrange

We investigate the Sobolev regularity of solutions of the linear Dirichlet problem
when the density ismerely anL1 function and, more generally, a finite Borelmeasure.

5.1 Embedding in Sobolev spaces

We follow Littman, Stampacchia and Weinberger’s duality approach to prove the
Sobolev regularity of solutions of the linear Dirichlet problem

´
!!u D " on #,

u D 0 on @#,

involving measure data, see Theorem 5.1 in [213] or Théorème 9.1 in [316]:

Proposition 5.1. Let# be a smooth bounded open set, and let " 2 M.#/. If u is the
solution of the linear Dirichlet problem with density ", then, for every 1 6 q < N

N!1
,

we have u 2 W 1;q
0 .#/, and the estimate

kukW 1;q.!/ 6 Ck"kM.!/

holds for some constant C > 0 depending on q, N , and #.

By the Sobolev embedding (see Corollary 4.12), the solution u thus belongs to the
Lebesgue space Lp.#/ for every exponent 1 6 p < N

N!2
, and satisfies the estimate

kukLp.!/ 6 C 0k"kM.!/:

1“Assuming the force F is proportional to 1

"2 , it suffices to find the value of 1
"

and to differentiate
it by ordinary methods.”
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On the other hand, solutions need not belong to W
1; N

N!1

0 .#/, and this is related to
the failure of the natural counterpart of the Calderón–Zygmund regularity theory for
L1 data that we explain at the end of this section.

The introduction of the potential function u by Lagrange [189] – later pursued
by Laplace [190], [191] and Poisson [283], [28] – was originally motivated by the
study of the force fieldG D !ru. In this respect, the scalar quantity u is supposedly
easier to compute, but the forceG itself is the major physical notion. The embedding
of solutions of the Dirichlet problem into Sobolev spaces thus ensures the existence
of the force field G, with an estimate in terms of the total mass or the total electric
charge k"kM.!/ D j"j.#/.

Proposition 5.1 relies on the following estimate due to Stampacchia (Proposi-
zione 5.1 in [315]), in the spirit of the celebrated works of De Giorgi [103] and
Nash [260] providing Hölder continuity of solutions of elliptic PDEs. The strategy
of the proof below by Hartman and Stampacchia (Lemma 7.3 in [161]) is based on
Stampacchia’s truncation method.

Lemma 5.2. Let # be a bounded open set. If v 2 W
1;2

0 .#/ satisfies the linear
Dirichlet problem ´

!!v D f C divF on #;

v D 0 on @#;

for some f 2 Lr .#IR/ and some F 2 Lr.#IRN / with r > N , then v 2 L1.#/,
and the estimate

kvkL1.!/ 6 C.kf kLr .!/ C kF kLr .!//;

holds for some constant C > 0 depending on r , N and #.

Proof of Lemma 5.2. We assume in the proof that N > 3; the case of dimension
N D 2 requires some small modification concerning the Sobolev inequality. Given
0 > 0, let S* WR ! R be the function defined for t 2 R by

S*.t / D

8
<̂

:̂

t C 0 if t < !0,

0 if !0 6 t 6 0,

t ! 0 if t > 0.

Note that S*.v/ 2 W 1;2
0 .#/ and (cf. Exercise 5.3)

jrS*.v/j2 D rv # rS*.v/:

Taking S*.v/ as a test function of the Dirichlet problem, we get
ˆ

!

jrS*.v/j2 D
ˆ

!

fS*.v/!
ˆ

!

F # rS*.v/:
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Since S*.v/ D 0 in ¹jvj 6 0º, the Hölder inequality yields

ˆ

!

jrS*.v/j2 6 .kf kL2.¹jvj>*º/ C kF kL2.¹jvj>*º//kS*.v/kW 1;2.!/:

Using the Poincaré inequality (Proposition 4.5), we deduce that

krS*.v/kL2.!/ 6 C1.kf kL2.¹jvj>*º/ C kF kL2.¹jvj>*º//:

On the other hand, by the Hölder and the Sobolev inequalities (Corollary 4.12),
we have

kS*.v/kL1.!/ 6 kS*.v/k
L

2N
N!2 .!/

j¹jvj > 0ºj 1
2

C 1
N

6 C2krS*.v/kL2.!/ j¹jvj > 0ºj 1
2

C 1
N :

Combining the two estimates we deduce that, for every 0 > 0,

kS*.v/kL1.!/ 6 C3.kf kL2.¹jvj>*º/ C kF kL2.¹jvj>*º// j¹jvj > 0ºj 1
2 C 1

N :

By the Hölder inequality, for every r > 2 we have

kf kL2.¹jvj>*º/CkF kL2.¹jvj>*º/ 6 .kf kLr .¹jvj>*º/CkF kLr .¹jvj>*º// j¹jvj > 0ºj 1
2

! 1
r :

Therefore,

kS*.v/kL1.!/ 6 C3.kf kLr .!/ C kF kLr.!// j¹jvj > 0ºj1C 1
N

! 1
r :

Claim. If there exist ˛ > 1 and A > 0 such that, for every 0 > 0,

kS*.v/kL1.!/ 6 A j¹jvj > 0ºj˛ ;

then v 2 L1.#/ and

kvkL1.!/ 6 C 0A
1
˛ kvk1! 1

˛

L1.!/
:

Assuming the claim, we can conclude the proof of the lemma. Indeed, since
r > N and kvkL1.!/ 6 j#jkvkL1.!/, we deduce from the claim that

kvkL1.!/ 6 C4.kf kLr.!/ C kF kLr .!//;

which is the estimate we wanted to establish.
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Proof of the claim. By Cavalieri’s principle (Proposition 1.7),

kS*.v/kL1.!/ D
ˆ 1

0

j¹jS*.v/j > sºj ds D
ˆ 1

*

j¹jvj > sºj ds:

Therefore, we may rewrite the assumption on v as
ˆ 1

*

j¹jvj > sºj ds 6 A j¹jvj > 0ºj˛ :

Let H W Œ0;C1/ ! R be the function defined for t > 0 by

H.t/ D
ˆ 1

t

j¹jvj > sºj ds:

The function Œ0;C1/ 3 s 7! j¹jvj > sºj is nonincreasing, and whence continuous
except for countably many points. Thus, for almost every t > 0, we have

H 0.t / D ! j¹jvj > tºj :

In view of the estimate, for almost every 0 > 0 we then have

!H 0.0/ D j¹jvj > 0ºj >

)
H.0/

A

* 1
˛

:

Integrating this inequality (Exercise 5.1), we conclude that if ˛ > 1, thenH.00/ D 0

for some 00 > 0 such that

00 6 C5A
1
˛H.0/1! 1

˛ :

Since kvkL1.!/ 6 00 andH.0/ D kvkL1.!/, the claim follows. 4

The proof of the lemma is complete. !

Exercise 5.1 (finite time vanishing). Let ˇ < 1, and let H W Œ0;C1/ ! R be a
nonnegative absolutely continuous function such that

H 0
6 !BHˇ

almost everywhere in Œ0;C1/, for some constant B > 0. Prove that if s > 0 is such
that H.s/ > 0, then, for every 0 6 t 6 s, we have

H.t/ 6 .H.0/1!ˇ ! .1 ! ˇ/Bt/
1

1!ˇ :

Deduce that H.t/ D 0 for every t >
H.0/1!ˇ

.1!ˇ/B
.
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The existence of the weak gradient ru as an element in the Lebesgue space
Lq.#/ is obtained using the Riesz representation theorem (Proposition 3.3) and Stam-
pacchia’s estimate (Lemma 5.2).

Proof of Proposition 5.1. For every / 2 C1
0 .x#/, the solution of the linear Dirichlet

problem with density " satisfies the inequality
ˇ̌
ˇ̌
ˆ

!

u!/

ˇ̌
ˇ̌ 6 k"kM.!/k/kL1.!/:

Given f 2 C1.x#/, by the assumption on#wemay use as test function / 2 C1
0 .x#/

the solution of the linear Dirichlet problem with density f . For every 1 < q < N
N!1

,
the conjugate exponent satisfies q0 > N , whence by Stampacchia’s estimate we have

k/kL1.!/ 6 Ckf kLq0
.!/:

Therefore, ˇ̌
ˇ̌
ˆ

!

uf

ˇ̌
ˇ̌ 6 Ck"kM.!/kf kLq0

.!/:

This estimate holds for every f 2 C1.x#/, and then, by weak density, for every
f 2 L1.#/. We deduce from the Riesz representation theorem (Exercise 3.1) that
u 2 Lq.#/ and

kukLq.!/ 6 Ck"kM.!/:

We now prove that u has a weak derivative in Lq.#IRN /. For this purpose,
given F 2 C1.x#IRN /, we use as test function / 2 C1

0 .x#/ the solution of the
linear Dirichlet problem with density divF . For every 1 < q < N

N!1
, it follows from

Stampacchia’s estimate that
ˇ̌
ˇ̌
ˆ

!

u divF

ˇ̌
ˇ̌ 6 k"kM.!/k/kL1.!/ 6 Ck"kM.!/kF kLq0

.!/:

Thus, the functional

C1.x#IRN / 3 F 7!!
ˆ

!

u divF

admits a unique continuous linear extension inLq0
.#IRN /. By the Riesz representa-

tion theorem (Proposition 3.3), there exists a unique function G 2 Lq.#IRN / such
that, for every F 2 C1.x#IRN /,

ˆ

!

u divF D
ˆ

!

G # F:
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Therefore, u 2 W 1;q
0 .#/ and we have

kGkLq.!/ 6 Ck"kM.!/:

The proof of the proposition is complete when q > 1, and by the Hölder inequality
we also get the conclusion for q D 1. !

In the previous proof, we assumed that a solution u exists, and this follows from
Proposition 3.2, which is also based on Stampacchia’s estimate. We can in fact prove
simultaneously the existence and regularity of solutions of the linear Dirichlet prob-
lem using a compactness argument. Indeed, the previous proof gives the estimate
we need: for every 1 6 q < N

N!1
and every v 2 W

1;2
0 .#/ satisfying the Dirichlet

problem with density + 2 L2.#/,

kvkW 1;q.!/ 6 Ck+kL1.!/:

Next, if ."n/n2N is a sequence in L2.#/ converging in the sense of measures to
" (Proposition 2.7) and if un is the solution of the Dirichlet problem in W 1;2

0 .#/

with density "n (Proposition 4.6), then by the above estimate the sequence .un/n2N
is bounded in W 1;q

0 .#/. By the Rellich–Kondrashov compactness theorem (Propo-
sition 4.8), we may extract a subsequence converging strongly in Lq.#/ to some
function uwhich satisfies the Dirichlet problem with density ". By the closure prop-
erty of Sobolev spaces (Proposition 4.10), we deduce that u 2 W

1;q
0 .#/ for q > 1,

and so also for q D 1. This implies that every solution of the linear Dirichlet problem
has the required regularity since solutions are unique (Proposition 3.5).

We now compare the Sobolev embedding of solutions of the linear Dirichlet
problem ´

!!u D " in #,

u D 0 on @#,

in terms of L1 or measure data " (Proposition 5.1) with the classical Calderón–
Zygmund Lp theory for 1 < p < C1, see Theorem 9.15 and Lemma 9.17 in [146]:

Proposition 5.3. Let 1 < p < C1, and let # be a smooth bounded open set.
If " 2 Lp.#/, then the solution u of the Dirichlet problem above belongs to
W 2;p.#/ \W

1;p
0 .#/, and the estimate

kukW 2;p.!/ 6 Ck"kLp.!/

holds for some constant C > 0 depending on p and #.
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This is a remarkable contribution to the regularity theory of elliptic PDEs,
and more generally to harmonic analysis through estimates on the Riesz transform.
The inequality above fails for p D 1, which is the case handled by Proposition 5.1
above:

Exercise 5.2 (failure of L1 theory). Let N > 3, and let ' 2 C1
c .B.0I 1// be such

that ' D 1 in some neighborhood of 0. Prove that, for every 0 < ˛ 6 1, the function
uWB.0I 1/ ! R defined by

u.x/ D 1

jxjN!2

%
log

1

jxj
&!˛

';

satisfies the Dirichlet problem with L1 density in B.0I 1/, but u 62 W 2;1.B.0I 1//.

One can also argue by contradiction as follows. If the estimate

kukW 2;1.!/ 6 Ck"kL1.!/

were correct in dimension N > 3 for every solution of the linear Dirichlet problem,
then by the Sobolev–Gagliardo–Nirenberg inequality (Corollary 4.12) wewould have

kuk
L

N
N!2 .!/

6 C 0k"kL1.!/:

By an approximation argument (Proposition 2.7), this inequality would also hold with
" replaced by a Dirac mass ıa, in which case k"kL1.!/ should be replaced by the

total mass kıakM.!/ D 1. In particular, we would have u 2 L
N

N!2 .#/. But this is
not possible since, in the unit ballB.0I 1/, the solution of the linear Dirichlet problem
with density ı0 is explicitly given by

u.x/ D 1

.N ! 2/$N

% 1

kxkN!2
! 1

&
;

which does not belong to L
N

N!2 .B.0I 1//. In fact, a deep construction of Ornstein
implies that even the stronger inequality

kD2ukL1.!/ 6

NX

iD1

++++
@2u

@x2
i

++++
L1.!/

is false, see Theorem 1.3 in [182] or Theorem 1 in [268].
The connection with the Calderón–Zygmund’s singular integral theory becomes

more transparent by considering the following weak type estimates that we establish
later on in this chapter (Proposition 5.7). Firstly, we have a weak L

N
N!2 estimate for

solutions of the Dirichlet problem: for every t > 0,

t j¹juj > tºjN!2
N 6 Ck!ukL1.!/
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and, secondly, a weak L
N

N!1 estimate for the first-order derivatives of solutions: for
every t > 0,

t j¹jruj > tºjN!1
N 6 C 0k!ukL1.!/:

These estimates are the natural companions of the following weak L1 estimate
for second derivatives of solutions: for every t > 0,

t
ˇ̌
¹jD2uj > tº

ˇ̌
6 C 00k!ukL1.!/;

that lies at the heart of Calderón and Zygmund’s approach, see eq. (9.30) in [146]
or p. 30, eq. (9), in [317]. Once the latter weak estimate is established, the classical
Lp estimates for 1 < p < C1 then follow by interpolation of continuous linear
operators in Lebesgue spaces.

5.2 Weak Lebesgue functions

Before establishing the weak estimates satisfied by solutions of the linear Dirich-
let problem and their first-order derivatives, we recall the definition and some basic
properties of weak Lebesgue functions.

Definition 5.4. Let 1 6 p < C1. A Borel measurable function uW# ! R is a
weak Lp function if there existsM > 0 such that, for every t > 0,

t j¹juj > tºj 1
p 6 M:

For example, if u 2 Lp.#/, then, for every t > 0, by the Chebyshev inequality
we have

t j¹juj > tºj 1
p 6 kukLp.!/;

whence u is a weak Lp function, but the converse is false as one can see by consid-
ering the function

B.0I 1/ 3 x 7!! 1

jxj N
p

:

We are actually just missing the embedding into the Lebesgue space Lp.#/:

Proposition 5.5. If uW# ! R is a weak Lp function and if # has finite Lebesgue
measure, then, for every 1 6 r < p, we have u 2 Lr .#/ and

kukLr .!/ 6 CM;

for some constant C > 0 depending on p, r and j#j.



5.2. Weak Lebesgue functions 85

Proof. By Cavalieri’s principle (1.5),
ˆ

!

jujr D r

ˆ 1

0

t r!1 j¹juj > tºj dt:

We estimate the measure j¹juj > tºj for t small by j#j and for t large by Mp=tp.
Since r < p, for every s > 0 we have

ˆ

!

jujr 6 r

ˆ s

0

t r!1 j#j dt C r

ˆ 1

s

t r!1M
p

tp
dt D sr j#j C rMp

p ! r
1

sp!r
:

Thus, u 2 Lr .#/. The inequality is obtained by minimizing the right-hand side with
respect to s. !

We now give a convenient characterization of weak Lp functions in the spirit of
the Hölder inequality. The proof requires the same trick as in Proposition 5.5, and is
used again in the proof of the weak elliptic estimates in Proposition 5.7.

Proposition 5.6. Let uW# ! R be a Borel measurable function and 1 < p < C1.
We have that u is a weak Lp function if and only if, for every Borel set A " #,

ˆ

A

juj 6 M 0 jAj p!1
p ;

for some constantM 0 > 0.

Proof. If u satisfies the estimate, then taking A D ¹juj > tº with t > 0 we have
ˆ

¹juj>tº
juj 6 M 0 j¹juj > tºj

p!1
p :

Thus, by the Chebyshev inequality,

t j¹juj > tºj 6 M 0 j¹juj > tºj
p!1

p :

Assuming that the sets ¹juj > tº have finite measure, we deduce that u is a weak Lp

function. We can avoid such a finiteness assumption by taking instead

An D ¹juj > tº \ B.0I rn/;

where .rn/n2N is a sequence of positive numbers diverging to infinity. For every
n 2 N, the previous argument gives

t jAnj 1
p 6 M 0:

As n ! 1, we deduce that ¹juj > tº has finite measure, and satisfies the weak Lp

estimate.
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Conversely, if u is a weak Lp function, then by Cavalieri’s principle (Proposi-
tion 1.7) we have

ˆ

A

juj D
ˆ 1

0

jA \ ¹juj > tºj dt:

We estimate the measure of the set A \ ¹juj > tº by jAj or j¹juj > tºj according to
whether t is small or large: for every s > 0,

ˆ

A

juj 6

ˆ s

0

jAj dt C
ˆ 1

s

j¹juj > tºj dt D sjAj C Mp

p ! 1

1

sp!1
:

Minimizing the right-hand side with respect to s, we have the estimate. !

From the previous proof, the smallest constantsM andM 0 arising in the definition
of weak Lp functions and in the previous proposition are equivalent:

cM 0
6 M 6 M 0;

for some constant c > 0 depending on p.
We can compare the integral condition that appears in Proposition 5.6 with the

Riesz representation theorem (Exercise 3.1). Indeed, assume that we are given a
nonnegative summable function uW# ! R, and we wish to prove that u 2 Lp.#/.
It then suffices to prove that, for every v 2 L1.#/, we have

ˆ

!

uv 6 M 00kvk
L

p
p!1 .!/

:

In Proposition 5.6, only characteristic functions v D *A over Borel sets are admissi-
ble, and in this case u is merely a weak Lp function. If we further restrict the class
of Borel sets we are allowed to take, for instance to open balls B.xI r/ " #, we fall
into the class of Morrey functions satisfying

ˆ

B.xIr/

u 6 M 000rN
p!1

p :

The latter property has a natural counterpart in the setting of measures, see e.g.
Section 2 in [274]. More precisely, given 1 6 p < C1, we say that a locally finite
Borel measure " in RN belongs to the Morrey spaceMp.RN / if there exists C > 0

such that
j"j.B.xI r// 6 CrN p!1

p ;

for every x 2 RN and every r > 0. We then define the Morrey norm

k"kMp.RN / D sup
x2RN

r>0

j"j.B.xI r//
rN

p!1
p

: (5.1)
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We have for example that j"j 6 ˛Hs
1 for some 0 6 s < N and ˛ > 0 if and only

if " 2 M
N

N!s .RN / (Proposition B.3), where Hs
1 denotes the Hausdorff content

of dimension s. Embeddings in Morrey spaces, and their connection with the trace
inequality, are investigated in Chapters 10, 16, and 17.

5.3 Critical estimates

We now present an improvement of the Sobolev embedding of solutions of the linear
Dirichlet problem in terms of weak Lebesgue estimates. Although the inequalities

kuk
L

N
N!2 .!/

6 Ck"kL1.!/ and kruk
L

N
N!1 .!/

6 C 0k"kL1.!/

are not satisfied, they have a true counterpart in the setting of weak Lebesgue spaces.
Such weak estimates are implicitly stated in works by Zygmund (p. 247 in [349])
and Stampacchia (Lemma 7.3 in [315]) using an argument based on the Newtonian
potential generated by the measure "; see also Appendix in [25]. We present a dif-
ferent strategy developed by Boccardo and Gallouët [30] (see also [23]), and based
on Stampacchia’s truncation argument.

Proposition 5.7. LetN > 3, let# be a smooth bounded open set, and let" 2 M.#/.
If u is the solution of the linear Dirichlet problemwith density", then, for every t > 0,
we have

t j¹juj > tºjN!2
N 6 Ck"kM.!/

and

t j¹jruj > tºjN!1
N 6 C 0k"kM.!/;

for some constants C;C 0 > 0 depending on the dimension N .

The constants involved in these critical estimates do not depend on the size of the
domain. We rely on Stampacchia’s method based on the truncation function

T* WR !! R

defined for s 2 R by

T*.s/ D

8
<̂

:̂

!0 if s < !0,

s if !0 6 s 6 0,

0 if s > 0.
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Lemma 5.8. Let # be a smooth bounded open set, and let " 2 M.#/. If u is
the solution of the linear Dirichlet problem with density ", then, for every 0 > 0,
we have T*.u/ 2 W 1;2

0 .#/ and

krT*.u/kL2.!/ 6 0
1
2 k"k

1
2

M.!/
:

Proof of Lemma 5.8. We first assume that u 2 W
1;2

0 .#/ and " 2 L2.#/. By Exer-
cise 5.3 below, for every 0 > 0 we have T*.u/ 2 W 1;2

0 .#/ and

jrT*.u/j2 D rT*.u/ # ru:

Using T*.u/ as a test function in the equation satisfied by u we get
ˆ

!

jrT*.u/j2 D
ˆ

!

rT*.u/ # ru D !
ˆ

!

T*.u/" 6 0k"kL1.!/:

This gives the estimate when u 2 W 1;2
0 .#/ and " 2 L2.#/.

Given " 2 M.#/, we consider a sequence of functions ."n/n2N in L2.#/

converging weakly to " in the sense of measures, and such that (Proposition 2.7)

lim
n!1

k"nkL1.!/ D k"kM.!/:

If un 2 W
1;2

0 .#/ denotes the solution of the linear Dirichlet problem with density
"n, then, for every n 2 N, we have

krT*.un/kL2.!/ 6 0
1
2 k"nk

1
2

M.!/
:

Since the sequence .un/n2N is bounded in W 1;1
0 .#/ (Proposition 5.1), it follows

from the Rellich–Kondrashov compactness theorem (Proposition 4.8) and from the
uniqueness of the solution of the Dirichlet problem (Proposition 3.5) that .un/n2N
converges to u in L1.#/. Since .T*.un//n2N is bounded inW 1;2

0 .#/, by the closure
property in Sobolev spaces (Proposition 4.10) we have that T*.u/ 2 W 1;2

0 .#/ and

krT*.u/kL2.!/ 6 lim inf
n!1

krT*.un/kL2.!/:

The conclusion follows. !

Exercise 5.3 (truncation of Sobolev functions). Let 1 6 q < C1. Prove that,
for every u 2 W 1;q

0 .#/, we have T*.u/ 2 W 1;q
0 .#/ and

rT*.u/ D
´

ru in ¹juj 6 0º,
0 in ¹juj > 0º.

Deduce in particular that jrT*.u/j2 D rT*.u/ # ru.
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It follows from the previous lemma that, for every u 2 W 1;2
0 .#/ \ L1.#/ such

that !u 2 L1.#/, we have

krukL2.!/ 6 kuk
1
2

L1.!/
k!uk

1
2

L1.!/
: (5.2)

This inequality is the borderline case of the Gagliardo–Nirenberg interpolation
inequality, see [143] and [265]:

krukL2q.RN / 6 Ckuk
1
2

L1.RN /
kD2uk

1
2

Lq.RN /

for every 1 6 q < C1 and u 2 W 2;q.RN / \ L1.RN /.

Proof of Proposition 5.7. We begin with the first estimate. By the interpolation
inequality (Lemma 5.8), for every t > 0 we have Tt .u/ 2 W

1;2
0 .#/. Thus, by

the Sobolev inequality, we may estimate

kTt .u/k
L

2N
N!2 .!/

6 C1krTt .u/kL2.!/:

Next, by the Chebyshev inequality,

t j¹juj > tºjN!2
2N 6 kTt .u/k

L
2N

N!2 .!/

while, by the interpolation inequality, we have

krTt .u/kL2.!/ 6 t
1
2 k"k

1
2

M.!/
:

We then deduce that

t j¹juj > tºjN!2
2N 6 C1t

1
2 k"k

1
2

M.!/
:

We now establish the second estimate. For every t > 0 and s > 0, we have

¹jruj > tº "
²jruj > t

juj 6 s

³
[ ¹juj > sº:

Thus, by the subadditivity of the Lebesgue measure, we get

j¹jruj > tºj 6

ˇ̌
ˇ̌
²jruj > t

juj 6 s

³ˇ̌
ˇ̌ C j¹juj > sºj : (5.3)

We already have an estimate of the second term in the right-hand side. In order to
deal with the first one, we note that (Exercise 5.3)

²jruj > t

juj 6 s

³
D ¹jrTs.u/j > tº:
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By the Chebyshev and the interpolation inequalities (Lemma 5.8), we obtain

t

ˇ̌
ˇ̌
²jruj > t

juj 6 s

³ˇ̌
ˇ̌

1
2

6 krTs.u/kL2.!/ 6 s
1
2 k"k

1
2

M.!/
:

From (5.3), we then have

j¹jruj > tºj 6
s

t2
k"kM.!/ C C2

s
N

N!2

k"k
N

N!2

M.!/
:

Minimizing the right-hand side with respect to s, we obtain the second estimate. !

The best constant C arising in the first estimate of Proposition 5.7 was computed
by Cassani, Ruf, and Tarsi (Theorem 5 in [83]) using Talenti’s comparison princi-
ple [320]. The counterparts of the estimates of Proposition 5.7 in dimension N D 2

are

j¹juj > tºj 6 C j#j e!Ct=k-ukM.#/

and

j¹jruj > tºj1
2 6

C 0

t
k!ukM.!/:

The first one can be obtained as in the previous proof by replacing the Sobolev
inequality by the Trudinger inequality [325], see also Theorem 7.15 in [146]:

ˆ

!

e˛v2=krvk2

L2 6 C 00 j#j :

The second estimate is more subtle. In Lemma A.14 in [25], it relies on the inte-
gral representation of ru in terms of the Green function G,

ru.x/ D 1

2'

ˆ

!

rxG.x; y/ d".y/;

and on the pointwise estimate

jrxG.x; y/j 6
C 000

jx ! yj :

This argument relies on the linearity of the Laplacian and on the integral represen-
tation of solutions of the Poisson equation. Recent alternative proofs (Theorem 1.1
in [116], Theorem 1.2 in [178], and Theorem 1.4 in [247]) are based on BMO esti-
mates and reverse Hölder inequalities, but they are not as elementary as in dimension
N > 3.



Chapter 6

Comparison tools

“Un ensemble, en chaque point
duquel le potentiel atteint sa borne
inferieure dans un domaine, ne peut
porter de charge positive.”1

Charles de la Vallée Poussin

We investigate maximum principles adapted to the formalism of weak solutions
for the Poisson equation and its companion, the Dirichlet problem.

6.1 Weak maximum principle

We begin with a substitute of the classical weak maximum principle (Corollary 1.10)
in the setting of weak solutions:

Proposition 6.1. Let# be a smooth bounded open set and u 2 L1.#/. If !!u > 0

in the sense of .C1
0 .x#//0, then u > 0 almost everywhere in #.

By !!u > 0 in the sense of .C1
0 .x#//0 we mean that, for every nonnegative

function / 2 C1
0 .x#/, we have

!
ˆ

!

u!/ > 0:

Test functions in C1
0 .x#/ are sensitive to the information that u > 0 on the bound-

ary @#:

Example 6.2. Every nonnegative superharmonic function uWRN ! R satisfies
!!u > 0 in the sense of .C1

0 .x#//0 in a smooth bounded open set#. Indeed, given
a sequence of mollifiers .)k/k2N, each function )k % u is nonnegative and superhar-
monic inRN (Lemma 2.22). In addition, for every nonnegative function / 2 C1

0 .x#/
we have @(

@n
6 0 on @#. By the divergence theorem, for every k 2 N we thus have
ˆ

!

.)k % u/!/ D
ˆ

!

/!.)k % u/C
ˆ

@!

.)k % u/ @/
@n

d$ 6 0:

1“A set such that in each of its points the potential attains its infimum in a domain cannot carry a
positive charge.”
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The conclusion then follows letting k ! 1. An alternative approach that does not
rely on the convolution of u is based on the composition of test functions with convex
functions (Lemma 17.6).

In the proof of the proposition, we replace the term !!/ by any nonnegative
function in C1.x#/. This is possible in view of the classical weak maximum
principle.

Proof of Proposition 6.1. For every f 2 C1.x#/, let / 2 C1
0 .x#/ be the solution of

the linear Dirichlet problem
´

!!/ D f in #,

/ D 0 on @#.

If f > 0 in x#, then / is superharmonic, whence by the classical weak maximum
principle we have that / > 0 in #. We then deduce that

ˆ

!

uf > 0:

Since this inequality holds for every f 2 C1.x#/ such that f > 0 in x#, we may take
a sequence .fn/n2N of such functions converging almost everywhere to the character-
istic function *¹u<0º, and such that .fn/n2N is bounded inL1.#/. By the dominated
convergence theorem, we deduce that

ˆ

¹u<0º
u > 0:

Therefore, u > 0 almost everywhere in #. !

It is convenient to pass from an inequality in the sense of distributions to an
inequality in the sense of .C1

0 .x#//0. Stated differently, we want to find an assump-
tion which ensures that a supersolution of the equation

!!u D " in #,

is a supersolution of the Dirichlet problem
´

!!u D " in #,

u D 0 on @#.

We first clarify the meaning of the boundary condition, in terms of Sobolev
functions, that is implicit in Littman–Stampacchia–Weinberger’s formulation of the
Dirichlet problem (Definition 3.6):
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Proposition 6.3. Let # be a smooth bounded open set. Then, for every " 2 M.#/,
we have that u is a solution of the linear Dirichlet problem with density " if and only
if u 2 W 1;1

0 .#/ and the equation !!u D " is satisfied in the sense of distributions
in #: for every ' 2 C1

c .#/,
ˆ

!

ru # r' D
ˆ

!

' d":

We begin with an elementary approximation procedure on the test functions in
C1

0 .x#/:

Lemma 6.4. Let # be a bounded open set. Then, for every nonnegative function
/ 2 C1

0 .x#/, there exists a sequence .'n/n2N of nonnegative functions in C1
c .#/

such that

(i) .'n/n2N converges uniformly to / in x#,
(ii) .r'n/n2N is bounded in x# and converges pointwise to r/ in #.

Proof of Lemma 6.4. Given a smooth function H WR ! R vanishing in a neighbor-
hood of 0, for every n 2 N the function 'nW x# ! R defined by

'n D H.n///

belongs to C1
c .#/. The first assertion is then satisfied by choosing H such that

lim
t!C1

H.t/ D 1:

Concerning the convergence of the sequence of gradients, we first note that

r'n D H.n//r/ C Œn/H 0.n//&r/:

Since / is nonnegative, we have r/ D 0 in the set # \ ¹/ D 0º. Hence, the second
assertion is satisfied by taking H such that

lim
t!C1

tH 0.t / D 0: !

The previous lemma provides a similar approximation property for a signed func-
tion / 2 C1

0 .x#/. Indeed, we first write / D /1!/2 as a difference of two nonnegative
functions in C1

0 .x#/. We then get an approximating sequence for / by applying the
lemma separately to /1 and /2.

Proof of Proposition 6.3. If u is a solution of the Dirichlet problem, then the equa-
tion is satisfied in the sense of distributions, and by the Sobolev regularity property
(Proposition 5.1) we have u 2 W 1;1

0 .#/. Conversely, assume that u 2 W 1;1
0 .#/ and
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that the equation is satisfied in the sense of distributions in#. On the one hand, since
u 2 W 1;1

0 .#/, for every / 2 C1
0 .x#/, we have

!
ˆ

!

u!/ D
ˆ

!

ru # r/:

On the other hand, taking an approximating sequence .'n/n2N in C1
c .#/ satisfying

properties .i/ and .ii/ from Lemma 6.4, for every n 2 N we have
ˆ

!

ru # r'n D
ˆ

!

'n d":

As n ! 1, for every / 2 C1
0 .x#/ we deduce from the dominated convergence

theorem that
ˆ

!

ru # r/ D
ˆ

!

/ d":

Hence, u is a solution of the linear Dirichlet problem with density " in the sense of
Definition 3.1. !

Using the same argument, we obtain the equivalence between the notions of super-
solutions for the Poisson equation and the Dirichlet problem for functions vanishing
on the boundary in the sense of Sobolev functions:

Proposition 6.5. Let # be a smooth bounded open set and let " 2 M.#/. Take
u 2 W 1;1

0 .#/. The following assertions are equivalent:

(i) !!u > " in the sense of .C1
0 .x#//0,

(ii) !!u > " in the sense of distributions in #.

Proof. We only need to prove the reverse implication. Since u 2 W 1;1
0 .#/, for every

/ 2 C1
0 .x#/ we have

!
ˆ

!

u!/ D
ˆ

!

ru # r/:

Taking a nonnegative function / and a sequence .'n/n2N inC1
c .#/ as in the approx-

imation lemma above, for every n 2 N we have
ˆ

!

ru # r'n >

ˆ

!

'n d":

Letting n ! 1, by the dominated convergence theorem we get
ˆ

!

ru # r/ D lim
n!1

ˆ

!

ru # r'n > lim
n!1

ˆ

!

'n d" D
ˆ

!

/ d";

and the conclusion follows. !
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The condition u 2 W
1;1

0 .#/ is rather strong. A natural assumption – but more
subtle to implement – is to assume that u! 2 W

1;1
0 .#/. The boundary information

encoded in terms of test functions in C1
0 .x#/ can be also expressed as a limit of

average integrals of u! near the boundary (cf. Proposition 20.2):

lim
%!0

1

,

ˆ

¹x2!Wd.x;@!/<%º
u! D 0;

without reference to Sobolev functions.

6.2 Variants of Kato’s inequality

The classical weak maximum principle relies on the idea that the Laplacian of a
smooth function is nonnegative in the minimum set of the function (cf. proof of
Lemma 1.9). This leaves little hope that a similar interpretation holds for nonsmooth
functions. In fact, this property has an elegant counterpart for potentials, and can be
stated in terms of Kato’s inequality, see Lemma A in [175]:

Proposition 6.6. If u 2 L1.#/ is such that !u 2 L1.#/, then

!uC
> *¹u>0º!u

in the sense of distributions in #.

The original motivation of Kato was to study properties of solutions of the
Schrödinger equation which need not belong to the variational W 1;2 setting. Note
that a twice differentiable function uW# ! R satisfies, for every x 2 #,

!uC.x/ D
´
!u.x/ if u.x/ > 0,

0 if u.x/ < 0.

If u.x/ D 0, then !uC.x/ need not exist in the classical sense. Since in this case
x is a minimum point for the nonnegative function uC, we could formally say that
!uC.x/ > 0. We thus obtain a formal pointwise statement of Kato’s inequality,
namely

!uC.x/ > *¹u>0º.x/!u.x/:

Proof of Proposition 6.6. The first step of the proof of Kato’s inequality relies on the
observation that when u is smooth, then, for every smooth function H WR ! R,
we have

!H.u/ D H 0.u/!uCH 00.u/jruj2;
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and if in addition H is convex, then

!H.u/ > H 0.u/!u: (6.1)

The next step consists in approximating u 2 L1.#/ by smooth functions
– for instance via convolution – in which case we may apply the inequality above.
More precisely, given a nonnegative test function ' 2 C1

c .#/, and given a sequence
of mollifiers .)n/n2N such that supp' ! supp )n b #, we have

!.)n % u/ D )n %!u (6.2)

pointwise in supp' (Lemma 2.22). Thus, integration by parts and inequality (6.1)
for smooth functions yield

ˆ

!

H.)n % u/!' D
ˆ

!

!H.)n % u/ ' >

ˆ

!

H 0.)n % u/.)n %!u/ ': (6.3)

Assuming in addition that the derivative H 0 is bounded in R, as n ! 1 we deduce
from the dominated convergence theorem that

ˆ

!

H.u/!' >

ˆ

!

H 0.u/!u': (6.4)

In the last step, we approximate the function R 3 t 7! tC by smooth convex
functions. For this purpose, we take a sequence .Hn/n2N of smooth convex functions
in R such that the sequence .H 0

n/n2N is uniformly bounded, and

.a/ for every t 2 R, lim
n!1

Hn.t / D tC,

.b/ for every t 6 0, lim
n!1

H 0
n.t / D 0,

.c/ for every t > 0, lim
n!1

H 0
n.t / D 1.

Applying the integral inequality (6.4) withH D Hn, and letting n ! 1, we get
ˆ

!

uC!' >

ˆ

!

*¹u>0º!u':

This is the formulation of Kato’s inequality in the sense of distributions in #. !

The assumption !u 2 L1.#/ is not invariant in the context of Kato’s inequality:

Example 6.7. For every a < c < b, the function uW .a; b/ ! R defined by
u.x/ D x ! c satisfies

!uC D .uC/00 D ıc

in the sense of distributions in .a; b/. Hence, !uC is not an L1 function.
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Note however that !uC is always a locally finite measure, which follows from
Schwartz’s characterization of nonnegative distributions (Proposition 2.20). Indeed,
by Kato’s inequality, the distribution

T D !uC ! *¹u>0º!u

is nonnegative, whence T is a locally finite measure on #. By linearity, we deduce
that !uC is also a locally finite measure on #.

Kato’s inequality is usually applied to a solution of some equation, in which case
the assumption !u 2 L1.#/ is probably enough. However, when dealing with
subsolutions, or when the equation itself involves measure data, such an assumption
on !u becomes restrictive. In order to have a counterpart of Kato’s inequality when
!u is a measure, one should first understand the meaning of the product *¹u>0º!u,
but this is a delicate issue. Indeed, if u and v are two functions which coincide
almost everywhere in #, then !u and !v coincide as distributions, but *¹u>0º!u
and *¹v>0º!v may be different.

We propose three ways of handling the product *¹u>0º!u in Kato’s inequality
when !u need not be an L1 function. The first strategy consists in eliminating the
characteristic function *¹u>0º. For example, when u is smooth, we could write

*¹u>0º!u > min ¹!u; 0º:

Proposition 6.8. If u 2 L1.#/ is such that !u 2 M.#/, then

!uC
> min ¹!u; 0º

in the sense of distributions in #.

Proof. In the proof of Kato’s inequality, we rewrite (6.2) in supp ' as

!.)n % u/ D )n %!u > )n % min ¹!u; 0º:

In particular, the function in the right-hand side is nonpositive. Assuming in addition
that 0 6 H 0 6 1, the integral inequality (6.3) can now be replaced by

ˆ

!

H.)n % u/!' >

ˆ

!

.)n % min ¹!u; 0º/ ':

Thus, as n ! 1, (6.4) is substituted by
ˆ

!

H.u/!' >

ˆ

!

' min ¹!u; 0º:

Using the same approximation argument with smooth convex functions, the conclu-
sion follows. !
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The second strategy consists in replacing!u by some summable function smaller
than !u. For example, when u is smooth and !u > f for some L1 function f ,
we have

*¹u>0º!u > *¹u>0ºf:

Proposition 6.9. Let f 2 L1.#/. If u 2 L1.#/ is such that

!u > f

in the sense of distributions in #, then

!uC
> *¹u>0ºf

in the sense of distributions in #.

Proof. In the proof of Kato’s inequality, we rewrite (6.2) in supp ' as

!.)n % u/ D )n %!u > )n % f:

Assuming in addition that H 0 is nonnegative, the integral inequality (6.3) becomes
ˆ

!

H.)n % u/!' >

ˆ

!

H 0.)n % u/.)n % f / ':

Thus, as n ! 1, (6.4) is replaced by
ˆ

!

H.u/!' >

ˆ

!

H 0.u/f ':

Using the same approximation argument with smooth convex functions, the conclu-
sion follows. !

These two statements – or some combination of them – suffice for most purposes
in applications. Besides, their proofs are as simple as the proof of the original Kato’s
inequality. As a drawback, we have to give up on part of the information carried by
the measure !u.

The third strategy consists in giving a meaning to *¹u>0º!u by choosing a
suitable representative in some equivalence class of u. For this purpose, we adopt
the precise representative Ou defined in the Lebesgue set Lu of u (Definition 8.3):
for every x 2 Lu,

lim
r!0

 

B.xIr/

ju ! Ou.x/j D 0:
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where ( D ".RN /=.N ! 2/$N . Since "=".RN / is a probability measure and g is
a convex function, by Jensen’s inequality we have

g.N".x// 6

ˆ

RN

g
% (

jx ! yjN!2

& d".y/

".RN /
: (21.3)

By the monotonicity of g and the integration formula in polar coordinates, for every
R > 0 we have

ˆ

B.0IR/

g
% (

jx ! yjN!2

&
dx 6

ˆ

B.0IR/

g
% (

jzjN!2

&
dz

D $N

ˆ R

0

g
% (

rN!2

&
rN!1 dr:

Making the change of variables t D (=rN!2, we then get
ˆ

B.0IR/

g
% (

jx ! yjN!2

&
dx 6 C1

ˆ 1

)

RN!2

g.t/

t
N

N!2

dt

t
:

Since the right-hand side is bounded from above independently of y, it follows from
estimate (21.3) and Tonelli’s theorem that g.N"/ 2 L1.B.0IR//. !

Proof of Proposition 21.2: “ (H ”. Let "1 D max ¹"; 0º and "2 D min ¹"; 0º.
The function N"1 is nonnegative. Thus, by the sign condition, g.N"1/ is also non-
negative. By the previous lemma, we have g.N"1/ 2 L1.#/. Since N"1 is a non-
negative supersolution of the nonlinear Poisson equation with density ", we deduce
that N"1 is a supersolution of the nonlinear Dirichlet problem (Lemma 17.6).

By Property (21.2), we also have that g.N"2/ 2 L1.#/. Arguing as above,
it follows that N"2 is a nonpositive subsolution of the nonlinear Dirichlet problem
with density ". Since g is nondecreasing, we may apply the method of sub- and
supersolutions (Proposition 20.5) to conclude that the nonlinear Dirichlet problem
with density " has a solution u such that

N"2 6 u 6 N"1: !

To prove the direct implication of Proposition 21.2, we first study the behavior of
spherical averages of potentials around a point.

Lemma 21.4. LetN > 3. If u 2 L1
loc.#/ is such that!u 2 Mloc.#/, then, for every

a 2 #,
lim
r!0

rN!2

 

@B.aIr/

u d$ D ! 1

.N ! 2/$N

!u.¹aº/:
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Proof of Lemma 21.4. We temporarily assume that u is smooth. By the divergence
theorem, we have (cf. proof of Lemma 1.5)

d

ds

 

@B.aIs/

u d$ D
 

@B.aIs/

@u

@n
d$ D 1

$N sN!1

ˆ

B.aIs/

!u:

By the fundamental theorem of calculus, for every 0 < r < ) < d.a; @#/ we then
get

 

@B.aIr/

u d$ D
 

@B.aI$/

u d$ ! 1

$N

ˆ $

r

#
ˆ

B.aIs/

!u

$
ds

sN!1
: (21.4)

When u is merelyL1
loc.#/ and such that!u 2 Mloc.#/, this identity holds for almost

every r ; this can be verified using an approximation argument (cf. Lemma 2.22).
Since

lim
s!0

ˆ

B.aIs/

!u D !u.¹aº/;

we have

lim
r!0

.N ! 2/rN!2

ˆ $

r

#
ˆ

B.aIs/

!u

$
ds

sN!1
D !u.¹aº/:

Multiplying identity (21.4) by rN!2, and letting r ! 0, the conclusion follows. !

Proof of Proposition 21.2: “ H) ”. Let u be the solution of the nonlinear Dirichlet
problem with density ıa, for some a 2 #. By the integration formula in polar coor-
dinates, for every 0 < , < d.a; @#/ we have
ˆ

B.aI%/

g.u/ D
ˆ %

0

#
ˆ

@B.aIr/

g.u/ d$

$
dr D $N

ˆ %

0

rN!1

#
 

@B.aIr/

g.u/ d$

$
dr:

Since g is convex, by Jensen’s inequality we have
 

@B.aIr/

g.u/ d$ > g
%  

@B.aIr/

u d$
&
:

Given 0 < ( < 1=.N ! 2/$N , the previous lemma shows that there exists , > 0

such that, for almost every 0 < r 6 ,,
 

@B.aIr/

u d$ >
(

rN!2
:

Since g is nondecreasing, we deduce that
ˆ

B.aI%/

g.u/ > $N

ˆ %

0

rN!1g
% (

rN!2

&
dr:

Making the change of variables t D (=rN!2, we have the conclusion. !



Chapter 22

The Schrödinger operator

“The customary method does not
seem to work owing to the high
singularity of the potential.”

Tosio Kato

The Schrödinger operator !!CV is associated to a force field of the form !rV .
We establish a strong maximum principle for nonnegative smooth functions satisfy-
ing

!!uC V u > 0 in #,

where the potential V merely belongs to the Lebesgue space Lp.#/ for some
1 6 p 6 C1. The proof relies on the existence of solutions of the Dirichlet problem
for the Schrödinger operator involving measures.

22.1 Strong maximum principle

The classical strong maximum principle for the Laplacian (Lemma 1.11) implies that
if # is a connected open set and if uW# ! R is a nonnegative smooth function such
that

!!u > 0 in #;

then either u D 0 in# or u > 0 in#. Such a property is also satisfied by Schrödinger
operators with bounded potentials:

Proposition 22.1. Let# be a connected open set, and let V 2 L1.#/. If uW# ! R

is a nonnegative smooth function such that

!!uC V u > 0 in #,

and if there exists a 2 # such that u.a/ D 0, then u D 0 in #.

Proof. Given - > 0, consider the nonnegative function

U W# '
%
! '

2-
;
'

2-

&
!! R

defined by
U.x; s/ D u.x/ cos .-s/:
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Computing the Laplacian of U with respect to the variable .x; s/ we get

!U.x; s/ D Œ!u.x/ ! -2u.x/& cos .-s/:

Since cos-s > 0, by the assumption on u we get

!U.x; s/ 6 ŒV .x/ ! -2&U.x; s/:

Choosing - > kV k1=2

L1.!/
, the function U is superharmonic. Now, if u.a/ D 0 for

some a 2 #, then U.a; 0/ D 0, and it follows from the strong maximum principle
for superharmonic functions (Lemma 1.11) that U is identically zero. This implies
the conclusion for the function u. !

By the Harnack inequality (see Theorem 5 in [308], Corollaire 8.1 in [316], or
Theorem 5.2 in [326]) based on Moser’s iteration technique [257], the same conclu-
sion remains true for potentials V 2 Lp.#/ for some exponent p > N

2
. Below

this threshold, nonnegative supersolutions of the Schrödinger operator may vanish
without being identically zero: the function uWB.0I 1/ ! R defined by u.x/ D jxj2
satisfies the equation

!!uC V u D 0 in B.0I 1/
with V.x/ D 2N=jxj2. In this case, we have V 2 Lp.B.0I 1// for every 1 6 p < N

2
,

but V 62 LN=2.B.0I 1//.
When the supersolution u vanishes on a sufficiently large set, one would still

hope to conclude that u D 0 in # for badly behaved potentials like V 2 L1.#/, see
Theorem C.1 in [24], Theorem 5.2 in [87], or Theorem in [327]. Ancona beautifully
identified the role played by the W 1;2 capacity to detect the size of the set ¹u D 0º,
see Theorem 9 in [14]:

Proposition 22.2. Let# be a connected open set, and let V 2 L1.#/. If uW# ! R

is a nonnegative smooth function such that

!!uC V u > 0 in #,

and if u vanishes in a compact subset of positive W 1;2 capacity, then u D 0 in #.

Ancona’s proof relies on tools from potential theory. We present an alternative
strategy based on the following estimate, see [64] and [327]:

Lemma 22.3. Let V 2 L1.#/, and let uW# ! R be a nonnegative smooth func-
tion. If

!!uC V u > 0 in #,

then, for every ' 2 C1
c .#/, we have

ˆ

!

jr log.1C u/j2'2
6 C

ˆ

!

.V C'2 C jr'j2/:
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Proof of Lemma 22.3. Given ' 2 C1
c .#/, we multiply the differential inequality by

'2=.1C u/ to get

!u
'2

1C u
6

V u

1C u
'2

6 V C'2:

Note that

div
%
ru '2

1C u

&
D !u

'2

1C u
C ru # r'

2'

1C u
! jruj2
.1C u/2

'2:

Thus,

jruj2
.1C u/2

'2
6 V C'2 C ru # r'

2'

1C u
! div

%
ru '2

1C u

&
: (22.1)

On the other hand, for every , > 0 we have (Exercise 4.14)

ru # r'
2'

1C u
6 ,

jruj2
.1C u/2

'2 C 1

,
jr'j2:

Inserting this inequality in (22.1), we get

.1 ! ,/
jruj2
.1C u/2

'2
6 V C'2 C 1

,
jr'j2 ! div

%
ru '2

1C u

&
:

Integrating both sides over #, it follows from the divergence theorem that

.1 ! ,/
ˆ

!

jruj2
.1C u/2

'2
6

ˆ

!

V C'2 C 1

,

ˆ

!

jr'j2:

We deduce the estimate by taking any fixed 0 < , < 1. !

We need the following variant of the Poincaré inequality for functions vanishing
on a set of positive W 1;2 capacity:

Lemma 22.4. Let # be a connected smooth bounded open set, and let K " # be a
compact set. If capW 1;2.K/ > 0, then there exists C > 0 such that, for every function
 2 C1.x#/ vanishing in K, we have

k kL2.!/ 6 Ckr kL2.!/:

Proof of Lemma 22.4. Arguing by contradiction, if the inequality is not true, then
there exists a sequence . n/n2N"

in C1.x#/ such that, for every n 2 N#,

.a/  n D 0 in K,

.b/ k nkL2.!/ D 1,

.c/ kr nkL2.!/ 6
1
n
.
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Thanks to the smoothness of #, we may extend  n as a function supported in a
ball B.0IR/ c #, with uniform control of the W 1;2 norm. Thus, by the Rellich–
Kondrashov compactness theorem (Proposition 4.8), there exists a subsequence
. nk

/k2N converging strongly in L2.#/ to some function u such that

kukL2.!/ D 1:

Since .r nk
/k2N converges to 0 in L2.#IRN /, we deduce that u 2 W 1;2.#/ and

krukL2.!/ D 0. By the connectedness of#, we then have u D ˛ almost everywhere

in # for some ˛ 2 R. Since j˛j j#j 1
2 D 1, we have that ˛ ¤ 0.

Given a nonnegative function ' 2 C1
c .#/ such that ' > 1 inK, for each k 2 N

the function .1! nk
=˛/ ' is admissible in the definition of theW 1;2 capacity ofK,

whence
capW 1;2 .K/ 6 k.1 !  nk

=˛/ 'k2
W 1;2.!/

:

As k ! 1, the quantity in the right-hand side converges to zero, and we deduce that
capW 1;2 .K/ D 0. This is a contradiction. !

Proof of Proposition 22.2. For every ı > 0, the function u=ı satisfies the assump-
tions of Lemma 22.3. Thus, for every smooth bounded open subset ! b #, there
exists a constant C1 > 0, independent of ı > 0, such that

ˆ

!

ˇ̌
ˇr log

%
1C u

ı

&ˇ̌
ˇ
2

6 C1:

Since the function log.1 C u=ı/ vanishes in a compact subset of positive W 1;2

capacity in #, we may choose a connected smooth bounded open set ! b # having
the same property. Thus, by the Poincaré inequality above, we have

ˆ

!

ˇ̌
ˇlog

%
1C u

ı

&ˇ̌
ˇ
2

6 C 2

ˆ

!

ˇ̌
ˇr log

%
1C u

ı

&ˇ̌
ˇ
2

6 C2:

By the Chebyshev inequality and the monotonicity of the logarithm, for every t > 0,

j! \ ¹u > tºj
ˇ̌
ˇlog

%
1C t

ı

&ˇ̌
ˇ
2

6 C2:

Letting ı ! 0, we deduce that j! \ ¹u > tºj D 0. Thus, 0 6 u 6 t in !, for every
t > 0, whence u D 0 in !. !

It follows from Proposition 22.2 that either u D 0 in #, or the set ¹u D 0º
has Hausdorff dimension at most N ! 2 (cf. Proposition 10.4). The W 1;2 capacity
gives a more precise information in the sense that the following converse of the strong
maximum principle holds, see Proposition 6.3 in [270]: for any compact setK " RN


